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The relations between field coefficients and eigenvector
components are
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Iterative Solutions of Waveguide
Discontinuity Problems

MAGDY F. ISKANDER, MEMBER, IEEE, AND M. A. K. HAMID, SENIOR MEMBER, IEEE

Abstract—The method of overlapping regions, together with
Schwarz’s technique, is applied to waveguide discontinuity problems
to illustrate its potential and basic advantages and disadvantages over
other methods. The method reasonably corrects an arbitrary initial
assamption of field distribution in the plane of discontinuity to the
final value in a small number of iterations. The advantages are
illustrated for a waveguide bend and dumbbell shaped waveguide as
examples of transverse and longitudinal discontinuities, respectively.
Numerical results for the case where only the electric field is par-
allel to the sharp edge discontinuity are presented and compared
with available data, while extension to the case where only the
magnetic field is parallel to the edge is discussed.

I. INTRODUCTION

HARP waveguide discontinuities are extensively used in
numerous microwave power and communication cir-
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cuits, and their effects have been under investigation in the
last few decades. Generally, these discontinuities are charac-
terized as either transverse or longitudinal, depending on
whether the discontinuity lies in a plane transverse or
parallel to the direction of propagation, respectively, or
both. Waveguide junctions and bends are typical examples
of transverse discontinuities, while waveguide complex cross
sections belong to the class of longitudinal discontinuities.

Earlier attempts to characterize such discontinuities in-
clude rigorous, quasi-rigorous, numerical, and experimental
techniques [1]-[4]. The results normally permit computa-
tion of scattering matrix parameters, which may be used to
evaluate the parameters of an equivalent circuit, cutoff
wave numbers, and mode coefficients leading to propaga-
tion coefficients and field configurations.

While no method can be expected to deal with the most
general case of mixed types of discontinuities and arbitrary
waveguide boundaries, the choice of one method over others
for the most common discontinuities depends on the shape
as well as the electrical and physical dimensions of the
waveguide. Thus due to its asymptotic nature, the geometri-
cal theory of diffraction, in which the discontinuity is viewed
as multiple body interaction, becomes more appropriate as
the smallest linear dimension exceeds one wavelength [5].
However, when the distances between edges and corners are
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smaller than the wavelength, the ray diagram becomes more
involved and the accuracy becomes questionable in spite of
recent efforts to derive the near field diffraction coefficient
[6]. On the other hand, the boundary value approach is only
applicable when modal expansions can be found on both
sides of the discontinuity plane and does not normally lead
to a rapidly convergent series solution when the scattering
centers of the discontinuity are electrically close to each
other {7]. Other techniques, such as the perturbational
method, are limited to small departures in a parameter from
the case for which the solution is known. Also, the varia-
tional method requires a stationary formula which is rela-
tively insensitive to assumed variation of the field about the
correct solution [8]. However, the fact that an expression is
stationary does not justify the'assumption that it will yield
the best approximation when the assumed distribution is
completely arbitrary.

Integral techniques, such as those based on the Lorentz
reciprocity theorem and the reaction concept, have also
been employed but their utility is limited to elementary
geometries for which the resulting series or integral equa-
tions can be solved [9], [10}.

With the availability of fast electronic computers, numeri-
cal techniques have been popular and in particular those
‘based on integral or series formulations. This is not only
because of their advantages over the differential approach,
especially as far as the accuracy and the matrix order are
concerned, but also because of their adequacy and conven-
iency to treat certain scattering and antenna problems [11].
For example, the point matching technique [12], [13] has
proven so far to be the most efficient method from the
computational time point of view [4]. This technique,
however, can only be applied with confidence if the wave-
guide boundary is such that the Rayleigh hypothesis is valid.
Therefore, it is the lack of any systematic method for
estimating a priori the validity of such hypothesis that
appears to be the chief difficulty in applying this technique
[13], [14]. Also, like other numerical techniques, it rarely
offers more than little physical insight. Therefore, even with
the employment of the method of overlapping domains[15],
further analytical effort was found necessary to find such
relations as that between the eigenvalues of the complemen-
tary domains interior and exterior to a regular polygonal
conducting cylinder [16].

Since the basic difficulty in waveguide discontinuity prob-
lems is to obtain the electric field distribution in the plane of
the discontinuity, it is obvious that a method which allows
an initial assumption to be iterated in a few steps to the final
solution will be attractive. It is, therefore, the purpose of this
article to illustrate several advantages of using the method of
overlapping regions (OR method) which makes use of such
iterations. The or method generally involves dividing the
geometry of the discontinuity into several overlapping
subregions for each of which Green’s function is known. The
solution is then obtained iteratively using Schwarz’s itera-
tive procedure [17]. An example for each of transverse and
longitudinal discontinuities is given to illustrate the poten-
tial and the advantages of the method.
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II. THEORY

As an example of a transverse discontinuity, we consider
the geometry of Fig. 1 where a TE ;, mode is incident on an
assymetrical angled junction (sharp bend) of two H-plane
parallel plate waveguides. The geometry is hence two dimen-
sional and may be divided into two subregions I and II of
width b; and b, bounded by S, and S,, respectively, and
which overlap in the shaded area A.

Applying Green’s theorem in region I, it is clear that the
total electric field E,; in terms of the coordinates (x,,y,) is
given by

Ezl(xl’yl) = Ei(xbyl) + Jls

{Giln - VE3)
— Ex{n- VG)}ds (1)

where Ej; is the scattered field satisfying the two-
dimensional wave equation, G, is Green’s function for an
infinite parallel plate region. E% is the incident electric field of
unit amplitude and is given by

; [y -
E(x1,y1) = sin (f) exp (jkix,) (2)
1
where k, = [k® — (nn/b,)*]Y* and the exp (—jwt) time
dependence has been omitted. If G, is chosen to satisfy the
Dirichlet boundary condition in region I, namely,

o0

—J 1 .
Gix1,y1/X10:Y10) = bil Z kﬁexp (_.]knlxl - x1o’)

n=1"%n

-+ sin (nZTl) éin (m;)ilo) (3)
where (x,4,)10) are the coordinates of the source point, then
the integration limits in (1) will only involve the boundaries
l; and I, of A as shown in Fig. 1. By combining (1)-(3)
and substituting E,; — E. for ES;, the total electric field in

region I may be expressed in terms of its value and its normal
derivative on I; and [,, respectively,
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Fig. 1. Longitudinal section of a sharp bend between two assymetrical

H-plane waveguides.

where the z subscript has been dropped and E'is givenin (2).
The outward unit vector r, is normal to [, and is given by

(5)

where %, and §, are unit vectors along the x, and y, axes,
respectively.

Similarly, the total field in region ITis given in terms of the
(%3,y2) coordinates by

n, =sin (m — a)%; — cos (m — &)y,

Eu(vzya) = [ {Guln - VE) = Euln- VGu)} ds. (6)

The boundary S, will only involve /5 and [, of 4 if Gy is
chosen as before to satisfy the Dirichlet boundary condition,
then b, in (3) is replaced by b, and k, by

k, = [k* = (nm/ba)*]"2 (7)

Schwarz’s iterative method of solution is initiated by
assuming the electric field on , and its normal derivative on
I, which are denoted by E(l,) and Ej(ls), respectively.
Although an arbitrary assumption is possible, the incident
field is suggested to reduce the number of iterations as will be
shown in the numerical results. Hence, the assumed values
on I and [, as calculated from (2) can be used to calculate
from (6) the field on I, and its normal derivative on [,, i.e.,
E{(!,) and Ei(l,), which are then substituted back in (4). A
second-order approximation for the initially assumed field
can next be calculated. Although the iterative procedure
continues in a similar manner, it should be noted that after
each iteration the calculated E(l;) and Ei(l;) should be
normalized [18] so as to maintain an incident field of
constant amplitude.

Another example to illustrate a longitudinal-type discon-
tinuity is the dumbbell waveguide cross section shown in
Fig. 2. Due to the nature of the geometry an integral
equation formulation in terms of Green’s function rather
than a series eigenfunction expansion in each of the
subregions is preferable [19]-[21]. Since x = O represents
either an electric or magnetic symmetry plane, we consider
TM modes where the electric field is z-polarized everywhere.
For the case of an electric symmetry plane at x = 0, the cross
section on either side is divided into two subregions. These
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Fig. 2. Cross section of the dumbbell waveguide.

consist of region I (with the coordinate system at origin 0,)
which is a finite rectangle of dimensions b and 4, and region
II (with the coordinate system at origin 0,) which is a circle
of radius a. These two subregions overlap in the shaded area
as shown in Fig. 2.

Applying Green’s theorem in region I, the electric field for
TM modes is given by

oG®

E(x,y) = J El(d»}’o)ﬁd%-

Sy 0

(8)

Here G{© is Green’s function satisfying the Dirichlet bound-
ary condition in region I and is therefore given by

2 [ea]
G{2(x,y/X0.¥0) = d 2, sin (mnx/d) sin (mmnx,/d)
m=1

+$in (yy) sin (yub — y0))/7m sin (ymb) (9)

where y,, = [kZ — (mn/d)*]Y? and (x,.y,) are the coordi-
nates of a singular source distribution due to the nonzero
field on the boundary S . Similarly, the electric field at any
point interior to region II is given by ‘
(@
Ey(r¢) = _J En(a,¢0)agina doo.
Yo

S2

(10)

Here GIf is Green’s function satisfying the Dirichlet bound-
ary condition in region II and is therefore given by

GiL-B/rodo) =5 % exp (m(@ — o)
H{(k,
|t - B ey an)

To determine the cutoff wavenumber k_ the arguments of
E, are first changed to (r,¢) and the continuity condition on
the electric field and its normal derivative at S, are then
applied to eliminate the integral term in (10) using the
orthogonality of the trigonometric functions. It should be
noted that in doing so both G{2 in (9) are to be used in (8).
This is simply because for each point P on §, we calculate y,,
and x, and hence G{2 is used for y, > y, while G2 is used for
Yo < y,. This results in expressing the integration limits in
(8) in two parts from 0 to y ,and from y ,to b. This leads to an
integral equation in which E((d,y,) and k. are the unknowns
and may be determined iteratively. This is achieved by first
assuming a value of E(d,y,)in order to compute an approxi-
mate k, so that Ey(a,¢,) may be calculated from (8). The
initial results are then improved by substituting E (a,¢,) in
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Fig. 3. Convergence of the field distribution at the boundary I, of a symmetrical right-angled H-plane corner for
two different initial assumptions. (a) and (b) for an incident field of unity maximum amplitude. (c) and (d) for a constant

field of unity amplitude.

(10) to calculate a second-order approximation of E{d,y,).

Finally, the extension to the TM modes with a magnetic
symmetry plane are straightforward and need not be
repeated.

ITI. NUMERICAL RESULTS

In order to confirm the accuracy of the method, we
present numerical results in Table I for the reflection co-
efficient of a right-angled corner together with experimen-
tal data. The computed results on the basis of (4) are found
to be unaffected for this special case if the Green’s function
for a semi-infinite (rather than infinite) parallel plate wave-
guide is used. As a result, the computation time is consider-
ably reduced and amounted to 3.5 s for each value of kb,
using IBM 370/158 electronic computer. For this the series
in (3) was truncated to five terms and the 3-point Newton-
Cotes formula of Simpson’s rule was employed for integra-
tion with an interval of 0.054 between the successive points.
The number of iterations N naturally depends on the initial
choice of the electric field as illustrated in Table II for two

different initial assumptions while Fig. 3 illustrates the
corresponding convergence of the field on I,. Table II
shows a comparison for the cutoff wavenumber in the
special case of a cigar-shaped waveguide with previously
published data. This is the only case available for compari-
son in order to confirm the accuracy of the method in the
dumbbell waveguide example and is obtained by letting
b = 2a in Fig. 2. The required computation time per itera-
tion for the cutoff wavenumber k, of the dominant mode is
3.6 s using the same computer and when the series in (9) is
truncated after the third term (m = 3). Thed/avaluesarekept
larger than one to avoid overlapping of the two circles in
Fig. 2.

IV. DISCUSSION
Examination of our results shows that the method con-
verges regardless of the initial assumption of the unknown
field on the boundaries of the overlapping area. However,
the number of iterations is reduced if the initial assumption
is reasonable, as could be obtained from the incident field.
The fact that an arbitrary initial assumption is allowed is
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TABLE I
REFLECTION COEFFICIENT OF THE TE,, MODE INCIDENT
ON A SYMMETRICAL RIGHT-ANGLED H-PLANE CORNER

Measured
kb, Computed (Magnitude)
5.0 0.499 /—150.6° 0.493
5.1 0.539 /—153.7° 0.533
5.2 0.584 /—156.6° 0.560
5.3 0.643 /—158.5° 0.616
5.4 0.705 /—159.0° 0.697

TABLE II
CONVERGENCE OF THE REFLECTION COEFFICIENT FOR
Two DIFFERENT INITIAL ASSUMPTIONS (kb, = 5.3)

Initial Assumption for Ey(l,)

Incident Field of
N Unity Maximum Amplitude

Constant Field
of Unity Amplitude

1 —0.699 — j0.111 —1.359 — j0.222

2 —0.611 — j0.294 —0.471 — j0.471

3 —0.571 — j0.230 ~0.529 — j0.146

4 ~0.602 — j0.225 —0.639 — j0.220

5 —0.601 — j0.237 —0.597 — j0.251
TABLE III

CuUTOFF WAVENUMBERS k,a OF THE DOMINANT TM MoODE
IN A CIGAR-SHAPED WAVEGUIDE

Finite Elements OR Method

Method from m=1 m=3
dfa Graphical Data [22] N=1 N=3 N=3
1.15 1.78 2.040 2014 1.862
1.17 1.77 1.985 1.943 1.817
1.20 1.76 1.965 1.930 1.803
1.23 1.755 1.861 1.800 1.762
1.25 1.75 1.845 1.793 1.756
1.3 — 1.739 1.742 1.741
1.5 — 1.335 1.387 1.483

simply because each iteration replaces the values of the
previous iteration by a better estimate rather than adding a
correction term as normally done in the geometric theory of
diffraction. As a result, a sinusoidal field distribution for the
TE,, mode incident on the corner and which is the incident
field resulted in a correct field distribution after five itera-
tions. In this sense the method can be used to correct the
incident field used in the Kirchhoff theory of diffraction as
the aperture field can be replaced by a more accurate value
resulting from the iterations. In another sense the method
can help in finding numerical values for the diffraction
coefficients, used in the geometrical theory of diffraction, of
closely separated edges [23]. These are usually unavailable
due to the lack of knowledge of the wavefront in near field
interaction.

It should be noted that although we have placed
confidence in computing the cutoff wavenumbers of the
fundamental TM mode, the extension to higher order modes
is straightforward as reported elsewhere [20], [21]. Also, the
extension of the formulation to TM modes in the case of Fig.
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1 (e.g., by changing the excitation) and TE modes in the case
of Fig. 2 can be easily achieved in terms of the axial magnetic
field and following a similar procedure and employing
the Green’s functions for the Neumann boundary condition.
Numerical difficulties which are encountered because of
the singular behavior of the magnetic field near the edges
depending on the angle of the corner can, however, be dealt
with by decomposing the magnetic field near the edges into
two components. The first component describes the order of
the singularity in a manner similar to that previously
employed [24], [25], while the second is straightforward
since it describes the regular behavior of the field. Analytical
integration of the former component will eliminate the
numerical difficulties in a manner similar to that followed by
Harrington [26].
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Analysis of a Waveguide Hybrid Junction
by Rank Reduction

DOUGLAS N. ZUCKERMAN, MEMBER, IEEE, AND PAUL DIAMENT, MEMBER, IEEE

Abstract—Exact equations characterizing a waveguide hybrid
junction traversed by a dielectric sheet are formulated by waveguide
field-equivalence decomposition. A new reduced-rank spectral ex-
pansion technique avoids inversion of a large ill-conditioned matrix in
the calculation of the scattering matrix. Arbitrary sheet thicknesses
and permittivities are treated, accounting fully for waveguide boun-
daries and offset. For illustrative purposes, numerical results are
presented for a rectangular waveguide hybrid, when only the domin-
ant mode propagates.

1. INTRODUCTION

HE INTEGRAL EQUATIONS, and the correspond-
Ting matrix equations, that represent scattering at a
waveguide discontinuity often exhibit ill-conditioned be-
havior. In a previous paper [1] it was shown that the result-
ant difficulties can be largely overcome by taking advantage
of the relatively low effective rank of the ill-conditioned por-
tion of the matrix. In the following sections the new rank-
reduction technique is applied to the waveguide hybrid
junction problem. The hybrid junction, an important com-
ponent of certain advanced microwave communication
systems [2], [3] has resisted accurate analysis.

The hybrid junction to be analyzed is shown in Fig. 1. It
consists of two crossed waveguides whose junction is
traversed by a dielectric sheet at a 45° angle. By properly
choosing the diclectric constant and sheet thickness, a
directional coupler can be formed for a given frequency
band. This coupler is used in band diplexing networks [4],
[5] An accurate analysis of the hybrid is important in the
design of the band diplexer to achieve satisfactory frequency
band separation and to identify spurious modes that may
degrade system performance.

This paper will serve several purposes. It willillustrate the
use of field superposition principles to decompose the
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Fig. 1. Top view of a hybrid junction formed by two crossed waveguides
of width a whose junction is traversed at a 45° angle by a dielectric sheet
of thickness ¢ and relative dielectric constant &.

complicated geometry of a hybrid junction into a combina-
tion of separate, uniform waveguides. It will discuss
the application of this technique to derive an exact set of
equations for the scattering matrix of the junction. It will
further illustrate that, for those frequency intervals in which
higher order modes affect the scattering significantly, their
effect can be calculated despite the ill-conditioning of the
equations, by use of a new rank-reduction technique.
Finally, it will present the scattering coefficients for the
hybrid, in a frequency range in which quasi-optical approxi-
mations are not valid.

The analysis presented here is not restricted by the
waveguide geometry, and permits the computation of higher
order mode coupling. For purposes of illustration of the new
technique, numerical results are presented for a rectangular
waveguide hybrid over a frequency range in which only the



