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Iterative Solutions of Waveguide
Discontinuity Problems

MAGDY F. ISKANDER, MEMBER, IEEE, AND M. A. K. HAMID, SENIOR MEMBER, IEEE

Abstract—The method of overlapping regions, together with

Schwarz’s technique, is applied to waveguide discontinuity y problems
to illustrate its potential and basic advantages and disadvantages over
other methods, The method reasonably corrects an a~rbitrary initial
assumption of field dktribution in the plane of discontinuity y to the
final value in a small number of iterations. The advantages are

illustrated for a waveguide bend and dumbbell shaped waveguide as
examples of transverse and longitudinal discontinuities, respectively.

Numerical results for the case where only the electric field is par-

allel to the sharp edge discontinuity are presented and compared

with available data, while extension to the case where only the
magnetic field is parallel to the edge is discussed.

I. INTRODUCTION

sHARP waveguide discontinuities are extensively used in

numerous microwave power and communication cir-
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cuits, and their effects have been under investigation in the

last few decades. Generally, these discontinuities are charac-

terized as either transverse or longitudinal, depending on

whether the discontinuity lies in a plane transverse or

parallel to the direction of propagation, respectively, or

both. Waveguide junctions and bends are typical examples

of transverse discontinuities, while waveguide complex cross

sections belong to the class of longitudinal discontinuities,

Earlier attempts to characterize such discontinuities in-

clude rigorous, quasi-rigorous, numerical, and experimental

techniques [1]–[4]. The results normally permit computa-

tion of scattering matrix parameters, which may be used to

evaluate the parameters of an equivalent circuit, cutoff
wave numbers, and mode coefficients leading to propaga-

tion coefficients and field configurations.

While no method can be expected to deal with the most

general case of mixed types of discontinuities and arbitrary

waveguide boundaries, the choice of one method over others

for the most common discontinuities depends on the shape

as well as the electrical and physical dimensions of the

waveguide. Thus due to its asymptotic nature, the geometri-
cal theory of diffraction, in which the discontinuity is viewed

as multiple body interaction, becomes more appropriate as

the smallest linear dimension exceeds one wavelength [5].

However, when the distances between edges and corners are
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smaller than the wavelength, the ray diagram becomes more

involved and the accuracy becomes questionable in spite of

recent efforts to derive the near field diffraction coefficient

[6]. On the other hand, the boundary value approach is only

applicable when modal expansions can be found on both

sides of the discontinuity plane and does not normally lead

to a rapidly convergent series solution when the scattering

centers of the discontinuity are electrically close to each

other [7]. Other techniques, such as the perturbational

method, are limited to small departures in a parameter from

the case for which the solution is known. Also, the varia-

tional method requires a stationary formula which is rela-

tively insensitive to assumed variation of the field about the

correct solution [8]. However, the fact that an expression is

stationary does not justify the assumption that it will yield

the best approximation when the assumed distribution is

completely arbitrary.

Integral techniques, such as those based on the Lorentz

reciprocity theorem and the reaction concept, have also

been employed but their utility is limited to elementary

geometries for which the resulting series or integral equa-

tions can be solved [9], [10].
With the availability of fast electronic computers, numeri-

cal techniques have been popular and in particular those

based on integral or series formulations. This is not only

because of their advantages over the differential approach,

especially as far as the accuracy and the matrix order are

concerned, but also because of their adequacy and conven-

ience to treat certain scattering and antenna problems [1 1].

For example, the point matching technique [12], [13] has

proven so far to be the most efficient method from the

computational time point of view [4]. This technique,

however, can only be applied with confidence if the wave-

guide boundary is such that the Rayleigh hypothesis is valid.

Therefore, it is the lack of any systematic method for

estimating a priori the validity of such hypothesis that

appears to be the chief difficulty in applying this technique

[13], [14]. Also, like other numerical techniques, it rarely

offers more than little physical insight. Therefore, even with

the employment of the method of overlapping domains [15],
further analytical effort was found necessary to find such

relations as that between the eigenvalues of the complemen-

tary domains interior and exterior to a regular polygonal

conducting cylinder [16].

Since the basic difficulty in waveguide discontinuity prob-

lems is to obtain the electric field distribution in the plane of

the discontinuity, it k obvious that a method which allows

an initial assumption to be iterated in a few steps to the final

solution will be attractive. It is, therefore, the purpose of this

article to illustrate several advantages of using the method of

overlapping regions (oR method) which makes use of such
iterations. The OR method generally involves dividing the

geometry of the discontinuity into several overlapping

subregions for each of which Green’s function is known. The

solution is then obtained iteratively using Schwarz’s itera-

tive procedure [17]. An example for each of transverse and

longitudinal discontinuities is given to illustrate the poten-

tial and the advantages of the method.

II. THEORY

As an example of a transverse discontinuity, we consider

the geometry of Fig. 1 where a TE ~~ mode is incident on’an

assymetrical angled junction (sharp bend) of two H-plane

parallel plate waveguides. The geometry is hence two dimen-

sional and may be divided into two subregions I and II of

width b ~ and bz bounded by S ~ and S ~, respectively, and

which overlap in the shaded area ,4.

Applying Green’s theorem in region 1, it is clear that the

total electric field Ezl in terms of the coordinates (x ~,yJ is

given by

– E;I(n ~VG,)} ds (1)

where E:, is the scattered field satisfying the two-

dimensional wave equation, G1 is Green’s function for an

infinite parallel plate region. EL is the incident electric field of

unit amplitude and is given by

()E~(xl,yl) = sin ~ exp (jk~xl)
1

(2)

where k. = [kz – (nn/bl )2] 1’2 and the exp ( –jcot) time

dependence has been omitted, If GI is chosen to satisfy the

Dirichlet boundary condition in region I, namely,

G1(xl,yl/.xlO,ylO) = : f #exp (–lklxl – Xlol)
1 n=l n

“sin(%)!%?) ‘3)

where (x ~o,yl o) are the coordinates of the source point, then

the integration limits in (1) will only involve the boundaries

1, and 12 of A as shown in Fig. 1. By combining (l)-(3)

and substituting E,I – .E~ for Ejl, the total electric field in

region I maybe expressed in terms of its value and its normal

derivative on 11and 12, respectively,

()n7ry~o
“ sin —

b, yIO=XIO tan (x–a)

exp (–jk.lxl – X1OI dxlo)

+{0 Einl . VG1 dxlo
bl cot(n–a) yIO=XIO tan(n–a)

(4)
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Fig. 1. Longitudinal section of a sharp bend between two assymetrical
H-plane waveguides.

where the z subscript has been dropped and Et is given in (2).

The outward unit vector nl is normal to 12ancl is given by
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Fig. 2. Cross section of the dumbbell waveguide.

consist of region I (with the coordinate system at origin OJ

which is a finite rectangle of dimensions b and d, and region

II (with the coordinate system at origin OJ which is a circle

of radius a. These two subregions overlap in the shaded area

as shown in Fig. 2.

Applying Green’s theorem in region I, the electric field for

TM modes is given by

nl = sin (7c– ct)il –cos (n –ct)jl (5)
@O

EI(X,y) = ~ E1(d,yO) ~ dyO. (8)

where i 1 and $1 are unit vectors along the x 1 and y 1 axes,
s~

respectively. Here GP) is Green’s function satisfying the Dirichlet bound-

Similarly, the total field in region II is given in terms of the ary condition in region I and is therefore given by

(x,,y,) coordinates by

G[? (dxo>yo) = ; fjl ‘in (wnx/d) ‘in (wzxO/d)

E[,(xz,yz) = ~ {G[,(n . VEJ – E,I(n ~VG,l)} ds. (6)
m

S2 o sin (y~y) sin (ym(b – yO))/ym sin (ymb) (9)

The boundary Sz will only involve 13and 14of A if GII is

chosen as before to satisfy the Dirichlet boundary condition,

then b ~ in (3) is replaced by bz and k. by

k;= [kz – (rm/bJ2]1/2. (7)

Schwarz’s iterative method of solution is initiated by

assuming the electric field on 14and its normal derivative on

13 which are denoted by E1l(lJ and E~1(13), respectively.

Although an arbitrary assumption is possible, the incident

field is suggested to reduce the number of iterations as will be

shown in the numerical results. Hence, the assumed values

on 13 and 14as calculated from (2) can be used to calculate

from (6) the field on 1~ and its normal derivative on 12, i.e.,

Ei(ll) and E~(12), which are then substituted back in (4). A

second-order approximation for the initially assumed field

can next be calculated. Although the iterative procedure

continues in a similar manner, it should be noted that after

each iteration the calculated E1(ll ) and E’I(lJ should be

normalized [18] so as to maintain an incident field of

constant amplitude.

Another example to illustrate a longitudinal-type discon-

tinuity is the dumbbell waveguide cross section shown in

Fig. 2. Due to the nature of the geometry an integral

equation formulation in terms of Green’s function rather

than a series eigenfunction expansion in each of the

subregions is preferable [ 19]–[2 1]. Since x = O represents

either an electric or magnetic symmetry plane, we consider

TM modes where the electric field is z-polarized everywhere.
For the case of an electric symmetry plane at x ❑ = O,the cross

section on either side is divided into two subregions. These

where y~ = [k! – (nm/d)2] 1’2 and (x ~,yO) are the coordi-

nates of a singular source distribution due to the nonzero

field on the boundary S ~. Similarly, the electric field at any

point interior to region II is given by

r?Gf)
E1l(r,@)= –~ E1l(a,@O)~ a d@O. (lo)

S2

Here G~f) is Green’s function satisfying the Dirichlet bound-

ary condition in region II and is therefore given by

[ IW)(kca) ~ (kc~o) Jm(k,r). (11). H:)(k.ro) – ~m(kCa) m

To determine the cutoff wavenumber k, the arguments of

E1 are first changed to (r,@) and the continuity condition on

the electric field and its normal derivative “at Sz are then

applied to eliminate the integral term in (10) using the

orthogonality of the trigonometric functions. It should be

noted that in doing so both G~~ in (9) are to be used in (8).

This is simply because for each point P on S2 we calculate yP

and XPand hence G~j is used for y. > yP while G~! is used for
Y. < YP. This results in expressing the integration liIIIitS in

(8) in two parts fromO to y,and from ypto b. This leads to an
integral equation in which E1(d,yo) and kCare the unknowns

and may be determined iteratively. This is achieved by first

assuming a value of E{d,yo) in order to compute an approxi-

mate k. so that EII(a,@o) may be calculated from (8). The

initial results are then improved by substituting E1l(a,@o) in
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Fig. 3. Convergence of the field distribution at the boundary 14 of a symmetrical right-angled H-plane corner for
two different initial assumptions. (a) and (b) for an incident field of unity maximum amplitude. (c) and (d) for a constant
field of unity amplitude

(10) to calculate a second-order approximation of E{d,yO).

Finally, the extension to the TM modes with a magnetic

symmetry plane are straightforward and need not be

repeated.

III. NUMERICAL RESULTS

In order to confirm the accuracy of the method, we

present numerical results in Table I for the reflection co-

efficient of a right-angled corner together with experimen-

tal data. The computed results on the basis of (4) are found

to be unaffected for this special case if the Green’s function

for a semi-infinite (rather than infinite) parallel plate wave-

guide is used. As a result, the computation time is consider-

ably reduced and amounted to 3.5 s for each value of kbl
using IBM 370/158 electronic computer. For this the series
in (3) was truncated to five terms and the 3-point Newton–

Cotes formula of Simpson’s rule was employed for integra-

tion with an interval of 0.05~ between the successive points.

The number of iterations N naturally depends on the initial

choice of the electric field as illustrated in ‘Table II for two

different initial assumptions while Fig. 3 illustrates the

corresponding convergence of the field on 14. Table III

shows a comparison for the cutoff wavenumber in the

special case of a cigar-shaped waveguide with previously

published data. This is the only case available for compari-

son in order to confirm the accuracy of the method in the

dumbbell waveguide example and is obtained by letting

b = 2a in Fig. 2. The required computation time per itera-

tion for the cutoff wavenumber kCof the dominant mode is

3.6 s using the same computer and when the series in (9) is

truncated after the third term (m = 3). Thed/avalues are kept
larger than one to avoid overlapping of the two circles in

Fig. 2.

IV. DISCUSSION

Examination of our results shows that the method con-
verges regardless of the initial assumption of the unknown ‘

field on the boundaries of the overlapping area. However,

the number of iterations is reduced if the initial assumption

is reasonable, as could be obtained from the incident field.

The fact that an arbitrary initial assumption is allowed is



.... ..—-- ..—.. . ... . ... . . . -..—-- .. -- ... .... ... .. ----.-.,”

767ISKAN UtiK ANU HAMILJ : W AVMi UIDl! VISLXJN 1INU11 x k’KUDLEM3

TABLE I
REFLECTIONCOEFFICIENTOFTHE TE,0 MODE INCIDENT
ON A SYMMETRICALRIGHT-ANGLED H-PLANE CORNER

Measured
kbl Computed (Magnitude)

5.0 0.499 /– 150.6” 0.493

5.1 0.539 /– 153.7° 0.533

5.2 0.584 /– 156.& 0.560

5.3 0.643 /– 158.5° 0.616

5.4 0.705 /– 159.0° 0.697

TABLE 11
CONVERGENCEOF THE REFLECTION COEFFICIENT FOR

Two DIFFERENT INITIAL ASSUMPTIONS (kbl = 5.3)

Initial Assumption for E,1(14)

Incident Field of Constant Field
N Unity Maximum Amplitude of Unity Amplitude

1 –0.699 –jO.111 – 1.359 – jO.222
2 –0.61 1 – jO.294 –0.471 – jO.471
3 –0.571 – jO.230 –0.529 – jO.146
4 – 0.602 – jO.225 – 0.639 – jO.220
5 –0.601 – jO.237 –0.597 – jO.251

TABLE III
CUTOFFWAVENUMBERSk, a OF THE DOMINANT TM MODE

IN A CIGAR-SHAPED WAVEGUIDE

Fmhe Elements OR Method

Method from m=l m=j

d/a Graphical Data [22] N=l N=3 N=3

1.15 1.78 2.040 2.014 1.862
1.17 1.77 1.985 1.943 1.817
1.20 1.76 1.965 1.930 1.803
1.23 1.755 1.861 1.800 1.762
1.25 1.75 1.845 1.793 1.756
1.3 1.739 1.742 1.741
1.5 1.335 1.387 1.483

simply because each iteration replaces the values of the

previous iteration by a better estimate rather than adding a

correction term as normally done in the geometric theory of

diffraction. As a result, a sinusoidal field distribution for the

TEIO mode incident on the corner and which is the incident

field resulted in a correct field distribution after five itera-

tions. In this sense the method can be used to correct the

incident field used in the Kirchhoff theory of diffraction as

the aperture field can be replaced by a more accurate value

resulting from the iterations. In another sense the method

can help in finding numerical values for the diffraction

coefficients, used in the geometrical theory of diffraction, of

closely separated edges [23]. These are usually unavailable

due to the lack of knowledge of the wavefront in near field

interaction.

It should be noted that although we have placed

confidence in computing the cutoff wavenumbers of the

fundamental TM mode, the extension to higher order modes

is straightforward as reported elsewhere [20], ~. 1]. Also, the

extension of the formulation to TM modes in the case of Fig.

1 (e.g., by changing the excitation) and TE modes in the case

of Fig. 2 can be easily achieved in terms of the axial magnetic

field and following a similar procedure and employing

the Green’s functions for the Neumann boundary condition.

Numerical difficulties which are encountered because of

the singular behavior of the magnetic field near the edges

depending on the angle of the corner can, however, be dealt

with by decomposing the magnetic field near the edges into

two components. The first component describes the order of

the singularity in a manner similar to that previously

employed [24], [25], while the second is straightforward

since it describes the regular behavior of the field. Analytical

integration of the former component will eliminate the

numerical difficulties in a manner similar to that followed by

Barrington [26].
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Abstract—Exact equations characterizing a waveguide hybrid

junction traversed hy a dielectric sheet are formulated hy waveguide

field-equivalence decomposition. A new reduced-rank spectral ex-

pansion technique avoids inversion of a large ill-conditioned matrix in
the calculation of the scattering matrix. Arbitrary sheet thicknesses

and permittivities are treated, accounting fully for waveguide boun-
daries and offset. For illustrative pnrposes, numerical results are
presented for a rectangular wavegnide hyhrid, when only the domin-
ant mode propagates.

I. INTRODUCTION

T HE INTEGRAL EQUATIONS, and the correspond-

ing matrix equations, that represent scattering at a

waveguide discontinuity often exhibit ill-conditioned be-

havior. In a previous paper [1] it was shown that the result-

ant difficulties can be largely overcome by taking advantage

of the relatively low effective rank of the ill-conditioned por-

tion of the matrix. In the following sections the new rank-

reduction technique is applied to the waveguide hybrid

junction problem. The hybrid junction, an important com-

ponent of certain advanced microwave communication
systems [2], [3] has resisted accurate analysis.

The hybrid junction to be analyzed is shown in Fig. 1. It

consists of two crossed waveguides whose junction is

traversed by a dielectric sheet at a 45° angle. By properly

choosing the dielectric constant and sheet thickness, a

directional coupler can be formed for a given frequency

band. This Goupler is used in band diplcxing networks [4],

[5]. An accurate analysis of the hybrid is important in the

design of the band diplexer to achieve satisfactory frequency

band separation and to identify spurious modes that may

degrade system performance.

This paper will serve several purposes. It will illustrate the

use of field superposition principles to decompose the
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Fig, 1. Top view of a hybrid junction formed by two crossed waveguides
of width a whose junction is traversed at a 45° angle by a dielectric sheet
of thickness tand relative dielectric constant a

complicated geometry of a hybrid junction into a combina-

tion of separate, uniform waveguides. It will discuss

the application of this technique to derive an exact set of

equations for the scattering matrix of the junction. It will
further illustrate that, for those frequency intervals in which

higher order modes affect the scattering significantly, their

effect can be calculated despite the ill-conditioning of the

equations, by use of a new rank-reduction technique.

Finally, it will present the scattering coefficients for the

hybrid, in a frequency range in which quasi-optical approxi-

mations are not valid.

The analysis presented here is not restricted by the

waveguide geometry, and permits the computation of higher

order mode coupling. For purposes of illustration of the new

technique, numerical results are presented for a rectangular

waveguide hybrid over a frequency range in which only the


